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1 Heuristics

Problem. 1.1.6 Beginning with 2 and 7, the sequence 2, 7, 1, 4, 2, 8, .. is constructed by multiplying
successive pairs of its members and adjoining the result as the next one or two numbers of the sequence,
depending on whether the product is a one- or a two-digit number. Prove that the digit 6 appears an
infinite number of times in the sequence.

Solution.

Problem. 1.1.12 Let S be a set, and let ∗ be a binary operation on S satisfying the laws

x ∗ (x ∗ y) = y for all x,y in S

(y ∗ x) ∗ x = y for all x,y in S

Solution. We have

§1.1 Choose effective notation

Problem. 1.5.5 Write an equation to represent the following statements:

(a) At Mindy’s restaurant, for every four people who ordered cheesecake, there were five who ordered
strudel.

(b) There are six times as many students as professors at this college.

Solution. (a) Let c be the number of people ordering cheesecake. Let s be the number of people
ordering strudel. We have c

s
= 4

5 .

(b) Let s be the number of students. Let p be the number of professors. We have s = 6p.

Problem. 1.5.6 Guy wires are strung from the top of each of two poles to the base of the other.What is
the height from the ground where the two wires cross?

Solution. Let a and b be the heights of the two poles. Let x be the horizontal distance from the base
of the first pole till the projection of the point (where the two wires cross) on the ground.Let y be this
distance for the other pole. Let h be the height from the ground where the two wires cross. Using similar
triangles, we have

h

x
=

b

x+ y

h

y
=

a

x+ y
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From the above we see that h = ab
a+b

Problem. 1.5.7 A piece of paper 8 inches wide is folded so that one corner is placed on the opposite
side.Express the length of crease, L, in terms of the angle θ alone.

Solution. We have

Lcosθsin2θ = 8

=⇒ L =
4

sinθcos2θ

Problem. 1.5.8 Let P1,P2, . . . ,P12 be the successive vertices of a regular dodecagon(twelve sides).Are the
diagonals P1P9,P2P11,P4P12 concurrent?

Solution.

Problem. 1.6.11 The product of four consecutive terms of an arithmetic progression of integers plus the
fourth power of the common difference is always a perfect square.Verify this identity by incorporating
symmetry into the notation.

Solution. Let a − 3d,a − d,a + d,a + 3d be four consecutive terms of an arithmetic progression with
common difference 2d. We have,

(a− 3d)(a− d)(a+ d)(a+ 3d) + 16d4

= (a2 − 9d2)(a2 − d2) + 16d4

= a4 − 10a2d2 + 25d4

= (a2 − 5d2)2

§1.2 Argue By Contradiction

§1.3 Pursue Parity

Problem. 1.10.6

(a) Remove the lower left corner square and the upper right corner square from an ordinary 8− by− 8
chessboard.Can the resulting board be covered by 31 dominos.

(b) Let thirteen points P1, . . . ,P13 be given in the plane, and suppose they are connected by the
segments P1P2,P2P3, . . . ,P12P13,P13P1. Is it possible to draw a straight line which passes through
the interior of each of these segments?

Solution. (a) The two corner squares are of the same colour. After removing the two corner square we
either have 30 white squares or 30 black squares. Each domino covers one white square and one
black squares, so 31 dominos cover 31 white squares and 31 black squares.Therefore, 31 dominoes
cannot cover the chessboard from which the corner squares have been removed.

6 6
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(b)

Problem. 1.10.8 Let a1,a2, . . . ,an represent an arbitrary arrangement of the numbers 1, 2 . . . ,n. Prove
that n is odd, the product

(a1 − 1)(a2 − 1) · · · (an − 1)

is an even number.

Solution. As n is odd, you have one additional ai which is odd compared to number of even ais.
Therefore the above product has at least one even number.

Problem. 1.10.10 Show that x2 − y2 = a3 always has integral solutions for x and y whenever a is a
positive integer.

Solution. We have two cases:

1. a = 2k, where k is an integer.
From x2 − y2 = 8k3, We get the following equations

x+ y = 4k2

x− y = 2k

we can see that

x = k+ 2k2

y = 2k2 − k

which are both integers.

2. a = 2k + 1, where k is an integer
From x2 − y2 = (2k+ 1)3, we get the following equations

x+ y = 4k2 + 4k+ 1
x− y = 2k+ 1

we can see that

x = 2k2 + 3k+ 1

y = 2k2 + k

which are both integers.

§1.4 Generalize

Problem. 1.12.4 By setting x equal to the appropriate values in the binomial expansion

(1 + x)n =

n∑
k=0

(
n

k

)
xk

(or one of its derivatives, etc.) evaluate each of the following:

7 7
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(a)
∑n

k=1 k
2
(
n
k

)
(b)

∑n
k=1 3k

(
n
k

)
(c)

∑n
k=1

1
k+1

(
n
k

)
(d)

∑n
k=1(2k+ 1)

(
n
k

)
Solution. We start with the binomial expansion

(a) Differentiating the binomial expansion once, we have

n(1 + x)n−1 =

n∑
k=1

k

(
n

k

)
xk−1

Multiplying the above by x and differentiating again, we have

n(n− 1)x(1 + x)n−2 + n(1 + x)n−1 =

n∑
k=1

k2
(
n

k

)
xk−1

Setting x = 1 in the above equation we have

n∑
k=1

k2
(
n

k

)
= n(n− 1)2n−2 + n2n−1 = n(n+ 1)2n−2

(b) Setting x = 3 in the binomial expansion we have

n∑
k=1

3k
(
n

k

)
= 4n

(c) Integrating the binomial expansion we have∫ 1

0
(1 + x)ndx =

2n+1 − 1
n+ 1

= 1 +

n∑
k=1

1
k+ 1

(
n

k

)

=⇒
n∑

k=1

1
k+ 1

(
n

k

)
=

2n+1 − n− 2
n+ 1

(d) We have

n∑
k=1

(2k+ 1)
(
n

k

)
= 2n2n−1 + 2n − 1 = (n+ 1)2n − 1

Problem. 1.12.5 Evaluate

det


1 a a2 a4

1 b b2 b4

1 c c2 c4

1 d d2 d4


8 8
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Solution. Replacing d by x in the last row, we get a polynomial P(x).

P(x) = det


1 a a2 a4

1 b b2 b4

1 c c2 c4

1 x x2 x4


P(x) is a polynomial of degree 4. Moreover, P(a) = 0, P(b) = 0 and P(c) = 0, since the corresponding
matrix, with d replaced by a or b or c respectively, then has two identical rows. Therefore

P(x) = A(x− a)(x− b)(x− c)(x− l)

where l is the fourth root of P(x) = 0.

The coefficient of x3 in P(x) = 0 is zero,so the sum of the roots a+b+c+ l = 0. Therefore l = −(a+b+c).
The coefficient of x4 is

A = det

1 a a2

1 b b2

1 c c2

 = (b− a)(c− a)(c− b)

Therefore, the value of the original determinant is given by

P(d) = (b− a)(c− a)(c− b)(d− a)(d− b)(d− c)(a+ b+ c+ d)

Problem. 1.12.6

(a) Evaluate
∫∞

0 (e−xsinx)/xdx.

(b) Evaluate
∫1

0(x− 1)/lnxdx.

(c) Evaluate ∫∞
0

arctan(πx) − arctan(x)

x
dx

Solution. We make use of differentiation under integral sign or parameter differentiation.

(a) Using parameter differentiation,

G(k) =

∫∞
0
(e−xsin(kx))/xdx

=⇒ dG(k)

dk
=

∫∞
0

e−xcoskxdx

We have ∫∞
0

e−xcos(kx)dx = −e−xcos(kx)

∣∣∣∣∞
0
− k

∫∞
0

e−xsin(kx)dx

= 1 − k

(
−e−xsin(kx)

∣∣∣∣∞
0
+ k

∫∞
0

e−xcos(kx)dx

)
= 1 − k2

∫∞
0

e−xcos(kx)dx

=⇒
∫∞

0
e−xcos(kx)dx =

1
k2 + 1

9 9
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Hence,

dG(k)

dk
=

∫∞
0

e−xcos(kx)dx =
1

k2 + 1

The solution of the differential equation with G(0) = 0 is G(k) = arctan(k).

Therefore, ∫∞
0
(e−xsinx)/xdx = G(1) = arctan(1) =

π

4

(b) Using parameter differentiation,

H(m) =

∫ 1

0
(xm − 1)/lnxdx

=⇒ dH(m)

dm
=

∫ 1

0
xmdx =

1
m+ 1

The solution of the differential equation with H(0) = 0 is H(m) = ln(m+ 1).

Therefore, ∫ 1

0
(x− 1)/lnxdx = H(1) = ln(2)

(c) Using parameter differentiation,

F(a) =

∫∞
0

arctan(ax) − arctan(x)

x
dx

=⇒ dF(a)

da
=

∫∞
0

1
a2x2 + 1

dx =
π

2a

The solution of the differential equation with F(1) = 0 is F(a) = π
2 ln(a).

Therefore, ∫∞
0

arctan(ax) − arctan(x)

x
dx = F(π) =

π

2
ln(π)

Problem. 1.12.7 Which is larger 3
√

60 or 2 + 3
√

7?

Solution. Let x = a3 and y = b3. We have

( 3
√

4(x+ y))3 = 4(x+ y) = 4(a3 + b3) (1.1)

( 3
√
x+ 3

√
y)3 = x+ y+ 3 3

√
xy( 3

√
x+ 3

√
y) = a3 + b3 + 3ab(a+ b) (1.2)

Subtracting 1.2 from 1.1, we have

4(a3 + b3) − (a3 + b3 + 3a2b+ 3ab2) = 3(a3 + b3 − a2b− ab2) ⩾ 0

because of Muirhead’s inequality as (3, 0) majorizes (2, 1). Equality holds only when a = b.

Therefore,
3
√

60 = 3
√

4(8 + 7))3 >
3
√

8 +
3
√

7
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2 Two Important Principles:Induction and
Pigeonhole

§2.1 Induction: Build on P(k)

§2.2 Pigeonhole Principle

11





3 Arithmetic

§3.1 Modular Arithmetic

Problem. 3.2.11 Prove that any subset of 55 numbers chosen from the set {1, 2, . . . , 100} must contain
numbers differing by 10, 12 and 13, but need not contain a pair differing by 11.

Problem. 3.2.12 The elements of a determinant are arbitrary integers.Determine the probability that the
value of the determinant is odd.

Problem. 3.2.13

(a) Determine whether the following matrix is singular or nonsingular:
54401 57668 15982 103790
33223 26563 23165 71489
36799 37189 16596 46152
21689 55538 79922 51237



(b) Determine whether the following matrix is singular or nonsingular:
64809 99185 42391 44350
61372 26563 23165 71489
82561 39189 16596 46152
39177 55538 79922 51237



Problem. 3.2.14

(a) Show that 22x+1 + 1 is divisible by 3.

(b) Prove or disprove:2x ≡ 2y(modn) if x ≡ y(modn).

(c) Show that 43x+1 + 23x+1 + 1 is divisible by 7.

(d) If n > 0, prove that 12 divides n4 − 4n3 + 5n2 − 2n.

(e) Prove that 2903n − 803n − 464 ∗ n+ 261n is divisible by 1897.

Problem. 3.2.15

(a) Prove that no prime three more than a multiple of four is a sum of two squares.

(b) Prove that the sequence (in base-10 notation)

11, 111, 1111, 11111, . . .

(c) Prove that the difference of the squares of any two odd numbers is exactly divisible by 8.

(d) Prove that 270 + 370 is divisible by 13.

13



Problem Solving through problems Vamshi Jandhyala (21/04/2020)

(e) Prove that the sum of two odd squares cannot be a square.

(f) Determine all integral solutions of a2 + b2 + c2 = a2b2.

Problem. 3.2.16

(a) If x3 + y3 = z3 has a solution in integers x,y, z, show that one of the three must be a multiple of 7.

(b) If n is positive integer greater than 1 such that 2n + n2 is prime, show that n ≡ 3(mod6).

(c) Let x be an integer one less than a multiple of 24.Prove that if a and b are positive integers such
that ab = x, then a+ b is a multiple of 24.

(d) Prove that if n2 +m and n2 −m are perfect squares, then m is divisible by 24.

Problem. 3.2.17 Let S be a set of primes such that a,b ∈ S(a and b need not be distinct) implies ab+4 ∈ S.
Show that S must be empty.

Problem. 3.2.18 Prove that there are no integers x and y for which

x2 + 3xy− 2y2 = 122.

Problem. 3.2.19 Given an integer n, show that an integer can always be found which contains only the
digits 0 and 1 and which is divisible by n.

Problem. 3.2.20 Show that if n divides a single Fibonacci number, then it will divide infinitely many
Fibonacci numbers.

Problem. 3.2.21 Suppose that a and n are integers, n > 1.Prove that the equation ax ≡ 1(modn) has a
solution if and only if a and n are relatively prime.

Problem. 3.2.22 Let a,b, c,d be fixed integers with d not divisible by 5. Assume that m is an integer for
which

am3 + bm2 + cm+ d

is divisible by 5. Prove that there exists an integer n for which

dn3 + cn2 + bn+ a

is also divisible by 5.

Problem. 3.2.23 Prove that (21n− 3)/4 and (15n+ 2)/4 cannot both be integers for the same positive
integer n.

Problem. 3.2.25 Let m0,m1, . . . ,mr be positive integers which are piarwise relatively prime. Show that
there exist r+ 1 consecutive integers s, s+ 1, . . . , s+ r such that mi divides s+ i for i = 0, 1, . . . , r.

§3.2 Positional Notation

Problem. 3.4.7 Prove that there does not exist an integer which is doubled when the initial digit is
transferred to the end.

14 14
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Problem. 3.4.10 Given a two-pan balance and a system of weights of 1, 3, 32, 33, . . . pounds, show that
one can weigh any integral number of pounds (weights can be put into either pan).

Solution.

Problem. 3.4.11

(a) Does the number 0.1234567891011121314 . . . , which is obtained by writing successively all the
integers, represent a rational number?

(b) Does the number 0.011010100010100 . . . , where a=1 if n is prime, 0 otherwise, represent a rational
number?

Problem. 3.4.12 Let S = a0a1a2 . . . , where an = 0 if there are an even number of 1 ′s in the expression of
n in base 2 and an = 1 if there are an odd number of 1 ′s. Thus, S = 01101001100 . . . Define T = b1b2b3 . . .
wher bi is the number of 1 ′s between the ith and the (i+ 1)st occurence of 0 in S. Thus, T = 2102012 . . .
Prove that T contains only three symbols 0, 1, 2.

Problem. 3.4.13 Show that there is a one-to-one correspondence between the points of the closed interval
[0, 1] and the points of the open interval (0, 1). Give an explicit description of such a correspondence.

§3.3 Arithmetic of Complex Numbers

Problem. 3.5.6

(a) Given that 13 = 22 + 32 and 74 = 52 + 72, express 13 × 74 = 962 as a sum of two squares.

(b) Show that 4arctan 1
5 − arctan 1

239 = π
4 .

Solution. Let z = 2 + 3i,w = 5 + 7i.We have

13 × 74 = |z|2|w|2 = |zw|2 = |− 11 + 29i| = 112 + 292

Problem. 3.5.7 Suppose A is a complex number and n is a positive integer such that An = 1 and
(A+ 1)n = 1. Prove that n is divisible by 6 and that A3 = 1

Problem. 3.5.8 Show that (
n

1

)
−

(
n

3

)
+

(
n

5

)
−

(
n

7

)
+ · · · = 2n/2cos

nπ

4

and (
n

0

)
−

(
n

2

)
+

(
n

4

)
−

(
n

6

)
+ · · · = 2n/2sin

nπ

4

15 15
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Solution. We have

(1 + i)n =

(
n

0

)
+ i

(
n

1

)
−

(
n

2

)
− i

(
n

3

)
+ · · ·

(1 − i)n =

(
n

0

)
− i

(
n

1

)
−

(
n

2

)
+ i

(
n

3

)
+ · · ·

Therefore,(
n

0

)
−

(
n

2

)
+

(
n

4

)
−

(
n

6

)
+ · · · = (1 + i)n + (1 − i)n

2
= 2n/2 e

inπ/4 + e−inπ/4

2
= 2n/2cos

nπ

4(
n

0

)
−

(
n

2

)
+

(
n

4

)
−

(
n

6

)
+ · · · = (1 + i)n − (1 − i)n

2
= 2n/2 e

inπ/4 − e−inπ/4

2
= 2n/2sin

nπ

4

Problem. 3.5.9 By considering possible magnitudes and arguments,

(a) find all values of 3
√
−i;

(b) find which values of (3 − 4i)−3/8 lie closest to the imaginary axis

Solution. (a) We have −i = e2kπ−π/2.Therefore,

3
√
−i = e2kπ/3−π/6

where k = 0, 1, 2.

(b)

Problem. 3.5.10

(a) Prove that if x− x−1 = 2isinθ then xn − x−n = 2isin(nθ).

(b) Using part(a), express sin2nθ as a sum of sines whose angles are multiple of θ.

Solution. (a)

(b)

Problem. 3.5.11 Show that

tan(nθ) =

(
n
1

)
tan θ−

(
n
3

)
tan3θ+ · · ·(

n
0

)
−
(
n
2

)
tan2θ+ · · ·

Solution.

Problem. 3.5.14 Show that if eiθ satisfies the equation zn + an−1z
n−1 + · · ·+ a1z+ a0 = 0, where the ai

are real, then an−1sinθ+ an−2sin2θ+ · · ·+ a1sin(n− 1)θ+ a0sin(nθ) = 0.

16 16
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Solution. If eiθ is a solution of the equation, then e−iθ is also a solution of the equation as the coefficients
are real.We have

an + an−1e
iθ + · · ·+ a0e

inθ = 0

Equating the imaginary part of the above equation to zero, we get

an−1sinθ+ an−2sin2θ+ · · ·+ a1sin(n− 1)θ+ a0sin(nθ) = 0

17 17





4 Algebra

§4.1 Alegbraic Identities

Problem. 4.1.5

(a) If a and b are consecutive integers, show that a2 + b2 + (ab)2 is a perfect square.

(b) If 2a is the harmonic mean of b and c, show that the sum of the squares of the three number a,b,
and c is the square of a rational number.

(c) If N differs from two successive squares between which it lies by x and y respectively, prove that
N− xy is a square.

Solution. (a) If a = n and b = n+ 1, we have

a2 + b2 + (ab)2 = n2 + (n+ 1)2 + n2(n+ 1)2

= n4 + 2n3 + 3n2 + 2n+ 1

= (n2 + n+ 1)2

(b) We have

a2 + b2 + c2 =
b2c2

(b+ c)2 + b2 + c2

=
b4 + c4 + 3b2c2 + 2b3c+ 2c3b

(b+ c)2

=

(
b2 + c2 + bc

b+ c

)2

(c) Let x = N− n2 and y = (n+ 1)2 −N, we have

N− xy = N− (N− n2)((n+ 1)2 −N)

= n2(n+ 1)2 +N2 +N(1 − (n+ 1)2 − n2)

= (N− n(n+ 1))2

Problem. 4.1.6 Prove that there are infinitely many natural numbers a with the following property: The
number n4 + a is not prime for any natural number n.

Problem. 4.1.7 Suppose that an integer n is the sum of two triangular numbers,

n =
a2 + a

2
+

b2 + b

2

write 4n + 1 as the sum of two squares, 4n + 1 = x2 + y2, and show how x and y can be expressed in
terms of a and b.

Show that conversely, if 4n+ 1 = x2 + y2, the n is the sum of two triangular numbers.
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Solution. We have,

4n+ 1 = 2(a2 + a) + 2(b2 + b) + 1

= (a+ b+ 1)2 + (a− b)2

If 4n+ 1 = x2 + y2, we have

n =
x2 + y2 − 1

4

=
(x+ y− 1)

2
(x+ y+ 1)

2
/2 +

(x− y− 1)
2

(x− y+ 1)
2

/2

Problem. 4.1.8 Let N be the number which when expressed in decimal notation consists of 91 ones:

N = 111 . . . 1︸ ︷︷ ︸
91

.

Show that N is a composite number.

Solution. We have

N =
1091 − 1
10 − 1

=
(107)13 − 1

10 − 1

As an − bn is divisible by a− b, the numerator is divisible by 107 − 1 = 9 · 1111111. As N is divisible by
1111111, N is a composite number.

Problem. 4.1.9 Prove that any two numbers in the following sequence are relatively prime:

2 + 1, 22 + 1, 24 + 1, 28 + 1, . . . , 22n + 1, . . .

Show that this result proves that there are infinite number of primes.

Solution.

Problem. 4.1.10 Determine all triplets of integers satisfying the equation:

x3 + y3 + z3 = (x+ y+ z)3

Solution. We have

(x3 + y3 + z3) + 3(x2y+ x2z+ xy2 + y2z+ xz2 + yz2) + 6xyz = (x+ y+ z)3

=⇒ 3 ((x+ y+ z)(xy+ xz+ yz) − 3xyz) + 6xyz = 0
=⇒ (x+ y+ z)(xy+ xz+ yz) = xyz
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§4.2 Unique Factorization of Polynomials

Problem. 4.2.7 Find polynomials F(x) and G(x) such that

(x8 − 1)F(x) + (x5 − 1)G(x) = x− 1

Problem. 4.2.8 What is the greatest common divisor of xn − 1 and xm − 1?

Solution. The greatest common divisor of xn − 1 and xm − 1 is xgcd(m,n) − 1 as xn − 1 is divisible xk − 1
whenever k divides n.

Problem. 4.2.9 Let f(x) be a polynomial leaving a remained A when divided by x− a and the remainder
B when divided x− b, a ̸= b. Find the remainder when f(x) is divided by (x− a)(x− b).

Solution. We have

f(x) = q(x)(x− a)(x− b) + cx+ d

=⇒ f(a) = A = ca+ d∧ f(b) = B = cb+ d

Solving for c and d we get the remainder when f(x) is divided by (x− a)(x− b) as

A− B

a− b
x+

bA− aB

b− a

Problem. 4.2.10 Show that x4a+x4b+1+x4c+2+x4d+3,a,b,c,d positive integers is divisible by x3+x2+x+1.

Solution. Let f(x) = x4a + x4b+1 + x4c+2 + x4d+3. We have f(−1) = 0, f(i) = 0 and f(−i) = 0, therefore by
the Factor theorem,we see that (x+ 1), (x− i) and (x+ i) are factors of f(x). Therefore f(x) is divisible by
(x+ 1)(x− i)(x+ i) = 1 + x+ x2 + x3.

Problem. 4.2.11 Show that the polynomials (cosθ+ xsinθ)n − cos(nθ) − xsin(nθ) is divisible by x2 + 1.

Solution. Let f(x) = (cosθ + xsinθ)n − cos(nθ) − xsin(nθ).We have f(i) = 0 and f(−i) = 0 using De
Moivre’s Theorem. Using the Factor theorem,we get that (x+ i) and (x− i) are factors of f(x). Therefore
f(x) is divisible by (x− i)(x+ i) = 1 + x2.

Problem. 4.2.12 For what n is the polynomial 1 + x2 + x4 + · · · + x2n−2 divisible by the polynomial
1 + x2 + x3 + · · ·+ xn−1.

Solution. We have

1 + x2 + x4 + · · ·+ x2n−2 =
x2n − 1
x2 − 1

1 + x2 + x3 + · · ·+ xn−1 =
x2n − 1
x2 − 1

Dividing the first expression by the second we get

(x2n − 1)(x− 1)
(x2 − 1)(xn − 1)

=
xn + 1
x+ 1

xn + 1 is divisible by x+ 1 when n is odd, therefore the polynomial 1 + x2 + x4 + · · ·+ x2n−2 divisible by
the polynomial 1 + x2 + x3 + · · ·+ xn−1 when n is odd.
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Problem. 4.2.13 A real number is called algebraic if it is a zero of a polynomial with integer coefficients.

(a) Show that
√

2 +
√

3 is algebraic.

(b) Show that cos(π/2n) is algebraic for each positive integer n.

Solution. (a) We have

x−
√

2 −
√

3 = 0

=⇒ x2 + 2 − 2
√

2x = 3

=⇒ x4 − 2x2 + 1 = 8x2

=⇒ x4 − 10x2 + 1 = 0

As
√

2 +
√

3 is a root of the equation x4 − 10x2 + 1 = 0 with integer coefficients it is algebraic.

Problem. 4.2.14 If P(x) is a monic polynomial with integral coefficients and k is any integer, must there
exist an integer m for which there are at at least k distinct prime divisors of P(m)?

Solution.

Problem. 4.2.15

(a) Factor x8 + x4 + 1 into irreducible factors (i) over the rationals, (ii) over the reals, (iii) over the
complex numbers.

(b) Factor xn − 1 over the complex numbers.

(c) Factor x4 − 2x3 + 6x2 + 22x+ 13 over the complex numbers, given that 2 + 3i is a zero.

Solution.

Problem. 4.2.16

(a) Let f(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0 be a polynomial of degree n with integral coefficients.
If a0,an,and f(1) are odd, prove that f(x) = 0 has no rational roots.

(b) For what integer a does x2 − x+ a divide x13 + x+ 90?

Solution.

Problem. 4.2.17

(a) Suppose f(x) is a polynomial over the real numbers and g(x) is a divisor of f(x) and f ′(x). Show
that (g(x))2 divides f(x).

(b) Use the idea of part (a) to factor x6 + x4 + 3x2 + 2x + 2 into a product of irreducibles over the
complex numbers.
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Solution. (a) We have f(x) = g(x)q(x). From this we have, f ′(x) = g(x)q ′(x) + g ′(x)q(x). As g(x) is
also a divisor of f ′(x), we can easily see that q(x) should be divisible by g(x) as g(x) cannot divide
g ′(x) which is a polynomial of lower degree than g(x). Therefore, (g(x))2 divides f(x).

(b) Let f(x) = x6 + x4 + 3x2 + 2x+ 2, we have f ′(x) = 6x5 + 4x3 + 6x+ 2.

Problem. 4.2.18 Determine all pairs of positive integers (m,n) such that 1 + xn + x2n + · · · + xmn is
divisible by 1 + x+ x2 + · · ·+ xm.

Solution. Denote the first and larger polynomial to be f(x) and the second one to be g(x). We could
instead consider f(x) modulo g(x). Notice that xm+1 = 1 (mod g(x)), and thus we can reduce the
exponents of f(x) to their equivalent modulo m+ 1. We want the resulting h(x) with degree less than
m+ 1 to be equal to g(x) (of degree m), which implies that the exponents of f(x) must be all different
modulo m+ 1. This can only occur if and only if gcd(m+ 1,n) = 1.

Problem. 4.2.19

(a) Let F(x) be a polynomial over the real numbers. Prove that a is a zero of multiplicity m

Solution.

§4.3 The Identity Theorem

Problem. 4.3.11 Let k be a positive integer. Find all polynomials

P(x) = anx
n + · · ·+ a1x+ a0

where the ai are real, which satisfy the equation

P(P(x)) = [P(x)]k

Problem. 4.3.12

(a) Prove that logx cannot be expressed in the form f(x)/g(x) where f(x) and g(x) are polynomials
with real coefficients.

(b) Prove that ex cannot be expressed in the form f(x)/g(x) where f(x) and g(x) are polynomials with
real coefficients.

Problem. 4.3.13 Show that

(1 + x)n − x(1 + x)n + x2(1 + x)n − . . . xk(1 + x)n = (1 + x)n−1(1 − (−x)k+1),

and use this identity to prove that(
n− 1
k

)
=

(
n

k

)
−

(
n

k− 1

)
+ · · · ±

(
n

0

)
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Solution. We have

(1 + x)n − x(1 + x)n + x2(1 + x)n − . . . xk(1 + x)n = (1 + x)n(1 − x+ x2 − · · · ± xk)

= (1 + x)n
(1 − (−x)−k+1)

1 − (−x)

= (1 + x)n−1(1 − (−x)k+1)

The coefficient of xk on the left hand side is(
n

k

)
−

(
n

k− 1

)
+ · · · ±

(
n

0

)
as we only need the term xk−i from (1 + x)n from the ith term. The coefficient of xk on the right hand
side is (

n− 1
k

)

Problem. 4.3.19

(a) Solve the equation x3 − 3x2 + 4 = 0, given that two of its roots are equal.

(b) Solve the equation x3 − 9x2 + 23x− 15 = 0, given that its roots are in arithmetical progression.

Solution. (a) Let f(x) = x3 − 3x2 + 4. As f(x) = 0 has two equal roots, f(x) = 0 and f ′(x) = 0 share
that root. The roots of f ′(x) = 3x2 − 6x = 0 are x = 0 and x = 2. As x = 0 is not a root of f(x) = 0,
x = 2 is a common root of f(x) and f ′(x).As the product of the roots of f(x) = 0 is −4, the roots of
f(x) = 0 are −1, 2 and 2.

(b) Let a− d,a,a+ d be the roots of x3 − 9x2 + 23x− 15 = 0. We have sum of the roots is 3a = 9 and
the product of the roots is 3(9 − d2) = 15. Therefore, the roots of the equation are 1, 3 and 5.

Problem. 4.3.20 Given r, s, t are the roots of x3 + ax2 + bx+ c = 0,

(a) Evaluate 1/r2 + 1/s2 + 1/t2, provided that c ̸= 0.

(b) Find a polynomial whose roots are r2, s2, t2

Solution. (a) Let f(x) = x3 + ax2 + bx+ c.As c ̸= 0, none of the roots of f(x) = 0 can be zero.We now
need to find g such that y = 1/z2 is a root of g(y) = 0 where z is the root of f(x) = 0.Therefore,
1/r2 + 1/s2 + 1/t2 will be the sum of the roots of g(y) = 0. We have f(1/

√
y) = 0, which means

(
1
√
y
)3 + a(

1
√
y
)2 + b(

1
√
y
) + c = 0

=⇒ c2y3 + y2(2ac− b2) + y(a2 − 2b) − 1 = 0

Therefore, 1/r2 + 1/s2 + 1/t2 = b2 − 2ac.

(b) We now need to find h(y) such that y = z2 is a root of h(y) = 0 where z is the root of f(x) = 0. We
have f(

√
y) = 0, which means

√
y

3 + a
√
y

2 + b
√
y+ c = 0

=⇒ y3 + y2(2b− a2) + y(b2 − 2ac) − c2 = 0
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§4.4 Abstract Algebra

Problem. 4.4.12 Let G be a set, and ∗ a binary operation on G which is associative and is such that for all
a,b in G, a2b = b = ba2(suppressing the ∗). Show that G is a commutative group.

Problem. 4.4.13 A is a subset of a finite group G, and A contains more than one-half of the elements of
G. Prove that each element of G is the product of two elements of A.
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5 Summation Of Series

Problem. 5.1.13 Prove that
n∑

k=0

[
n− 2k

n

(
n

k

)2
]
=

2
n

(
2n− 2
n− 1

)

Solution. We have (
n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

=

(
2n
n

)
(5.1)(

r

0

)(
s

n

)
+

(
r

1

)(
s

n+ 1

)
+

(
r

2

)(
s

n+ 2

)
+ · · ·+

(
r

n

)(
s

n+ n

)
=

(
r+ s

s− n

)
(5.2)

Using 5.1 and setting r = n− 1, s = n and n = 1 in 5.2, we have

n∑
k=0

[
n− 2k

n

(
n

k

)]2

=

n∑
k=0

((
n

k

)2

+
4k2

n2

(
n

k

)2

−
4k
n

(
n

k

)2
)

=

(
2n
n

)
+ 4

n∑
k=1

(
n− 1
k− 1

)2

+ 4 − 4
n∑

k=1

(
n− 1
k− 1

)(
n

k

)
− 4

=

(
2n
n

)
+ 4
(

2n− 2
n− 1

)
− 4
(

2n− 1
n− 1

)
=

(2n− 2)!
n!(n+ 1)!

(
2n(2n− 1)(n+ 1) + 4n2(n+ 1) − 4(2n− 1)n(n+ 1)

)
=

(2n− 2)!
n!(n+ 1)!

2n(n+ 1) =
2
n

(
2n− 2
n− 1

)

Problem. 5.1.14

Problem. 5.2.8 Sum the series 1 + 22 + 333 + · · ·+ n(11 . . . 1︸ ︷︷ ︸
n

).

Solution. We have

S = 1 + 22 + 333 + · · ·+ n(11 . . . 1︸ ︷︷ ︸
n

)

=
1
9
{9 + 2 · 99 + · · ·+ n(99 . . . 9︸ ︷︷ ︸

n

)}

=
1
9
{10 − 1 + 2(102 − 1) + · · ·+ n(10n − 1)}

=
1
9

(
n10n+2 − (n+ 1)10n+1 + 10

81
−

n(n+ 1)
2

)

Problem. 5.4.12 Let p and q be real numbers with 1/p− 1/q = 1, 0 < p ⩽ 1
2 . Show that

p+
1
2
p2 +

1
3
p3 + · · · = q−

1
2
q2 −

1
3
q3 + · · · .
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Solution. We have

1
p
−

1
q

= 1 =⇒ p =
q

1 + q

Differentiating the above, we have

−
dp

p2 +
dq

q2 = 0 =⇒ dp =
1

(1 + q)2 dq

We also have ∫
1

1 − p
dp =

∫
1

1 − q
1+q

1
(1 + q)2 dq =

∫
1

1 + q
dq

Integrating the series expansions on both sides, we have∫
1 + p+ p2 + · · ·dp =

∫
1 − q+ q2 − q3 + · · ·dq

=⇒ p+
1
2
p2 +

1
3
p3 + · · · = q−

1
2
q2 −

1
3
q3 + · · ·
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6 Real Analysis

§6.1 Continuous Functions

29



Problem Solving through problems Vamshi Jandhyala (21/04/2020)

§6.2 Intermediate-Value Theorem

Problem. 6.2.4 Suppose that f : [0, 1] → [0, 1] is continuous.Prove that there exists a number c in [0, 1]
such that f(c) = c.

Solution. If f(0) = 0 or f(1) = 1, there is nothing to prove. Consider the function g(x) = f(x) − x. It is
easy to see that g(x) is continuous on [0, 1]. We also have g(0) = f(0) > 0 and g(1) = f(1) − 1 < 0 as
f(0) ̸= 0 and f(1) ̸= 1. Intermediate-Value theorem guarantees the existence of a c in [0, 1] for which
g(c) = 0. Therefore, there exists a number c in [0, 1] such that f(c) = c.

Problem. 6.2.4 A rock climber starts to climb a mountain at 7 : 00A.M. on Saturday and gets to the top
at 5 : 00P.M. He camps on top and climbs back down on Sunday, starting at 7 : 00A.M. and getting back
to his original starting point at 5 : 00P.M. Show that at some time of day on Sunday he was at the same
elevation as he was at that time on Saturday.

Solution. We have two functions ha(t) and hd(t) giving the height of the climber as a function of time
for the ascent and descent. Let ts and te be 7 : 00A.M. and 5 : 00P.M. respectively. We can assume that
ha and hd are continuous on [ts, te]. Define a function h(t) = ha(t) − hd(t). We have h(ts) < 0 and
h(te) < 0. Intermediate-Value theorem guarantees the existence of a t in [ts, te] for which h(t) = 0.

Problem. 6.2.6 Prove that a continuous function which takes on no value more than twice must take on
some value exactly once.

Solution.

30 30



Vamshi Jandhyala (21/04/2020) Problem Solving through problems

§6.3 Rolle’s Theorem

Problem. 6.5.5

(a) Show that 5x4 − 4x+ 1 = 0 has a root between 0 and 1.

(b) If a0,a1, . . . ,an are real numbers satisfying

a0

1
+

a1

2
+ · · ·+ an

n+ 1
= 0

show that the equation a0 + a1x+ · · ·+ anx
n = 0 has atleast one real root.

Solution. We use Rolle’s theorem for the following:

(a) Let f(x) = x5 − 2x2 + x. f is continuous on [0, 1] and differentiable on (0, 1). We also have f(0) = 0
and f(1) = 0.Therefore there is a number c in (0, 1) such that f ′(c) = 5c4 − 4x+ 1 = 0.

(b) Let f(x) be

a0x+
a1x

2

2
+ · · ·+ anx

n+1

n+ 1
= 0

f is continuous on [0, 1] and differentiable on (0, 1). We also have f(0) = 0 and f(1) = 0.Therefore
there is a number c in (0, 1) such that f ′(c) = a0 + a1c+ · · ·+ anc

n = 0.

Problem. 6.5.6

(a) Suppose that f : [0, 1] → R is differentiable, f(0) = 0, and f(x) > 0 for x in (0, 1). Prove that there is
a number c in (0, 1) such that

2f ′(c)
f(c)

=
f ′(1 − c)

f(1 − c)

(b) Is there a number d in (0, 1) such that

3f ′(d)
f(d)

=
f ′(1 − d)

f(1 − d)

Solution. We use Rolle’s theorem for the following:

(a) Consider g(x) = f2(x)f(1 − x). g is differentiable on (0, 1).

We also have g(0) = 0 and g(1) = 0 .

Therefore there is a number c in (0, 1) such that g ′(c) = −f2(c)f ′(1 − c) + 2f(c)f ′(c)f(1 − c) = 0.
Therefore, as f(x) > 0 for x > 0,

2f ′(c)
f(c)

=
f ′(1 − c)

f(1 − c)

(b) Consider g(x) = f3(x)f(1 − x). g is differentiable on (0, 1).

We also have g(0) = 0 and g(1) = 0 .
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Therefore there is a number d in (0, 1) such that g ′(d) = −f3(d)f ′(1 − d) + 3f2(d)f ′(d)f(1 − d) = 0.
Therefore, as f(x) > 0 for x > 0,

3f ′(d)
f(d)

=
f ′(1 − d)

f(1 − d)

Problem. 6.5.7

(a) Cauchy mean-value theorem If f and g are continuous on [a,b] and differentiable on (a,b), then there
is a number c in (a,b) such that

[f(b) − f(a)]g ′(c) = [g(b) − g(a)]f ′(c)

(b) Mean-value theorem If f : [a,b] → R is continuous on [a,b] and differentiable on (a,b), then there is
a number c in (a,b) such that

f(b) − f(a)

b− a
= f ′(c)

Solution. (a) Define F(x) as follows

F(x) = f(x) −
f(b) − f(a)

g(b) − g(a)
g(x)

We see that F(a) = F(b). Rolle’s theorem guarantees the existence of c in (a,b) such that F ′(c) = 0.
Therefore,

f ′(c) −
f(b) − f(a)

g(b) − g(a)
g ′(c) = 0

=⇒ [f(b) − f(a)]g ′(c) = [g(b) − g(a)]f ′(c)

(b) Setting g(x) = x in Cauchy’s mean value theorem we have

[f(b) − f(a)] = [b− a]f ′(c)

=⇒ f(b) − f(a)

b− a
= f ′(c)

Problem. 6.5.8

(a) Show that x3 − 3x+ b = 0 cannot have more than one zero in [−1, 1], regardless of the value of b.

(b) Let f(x) = (x2 − 1)ecx. Show that f ′(x) = 0 for exactly one x in the interval (−1, 1) and that this x
has the same sign as parameter c.

Solution. A useful corollary to Rolle’s theorem is that if f is a continuous and differentiable function, say
on the interval [a,b], and if x1 and x2 are zeros of f, a < x1 < x2 < b, then f ′ has a zero between x1 and
x2. More generally, if f has n distinct zeros in [a,b], then f ′ has at least n− 1 zeros(these are interlaced
with the zeros of f), f ′′ has at least n − 2 zeros(assuming f ′ is continuous and differentiable on [a,b]),
and so forth.
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(a) If f(x) = x3 − 3x+ b has more than one zero in [−1, 1], then f ′(x) should have at least one zero in
(−1, 1). But f ′(x) = 3x2 − 3 has no zeros in (−1, 1), therefore f(x) cannot have more than zero in
[−1, 1] irrespective of the value of b.

(b) We have f(−1) = f(1) = 0. Therefor, f ′(x) has at least one zero in (−1, 1). As the zeros of f ′(x) have
to be interlaced with f(x), f ′(x) cannot have more than one zero in (−1, 1). If d is a root of f ′(x) = 0.
we have

(d2 − 1)cecd + ecd2d = 0

=⇒ c =
2d

1 − d2

As (1 − d2) is positive for d in (−1, 1), d the zero of f ′(x) has the same sign as the parameter c.

Problem. 6.5.9 How many zeros does the function f(x) = 2x − 1 − x2 have on the real line?

Solution. Clearly there are no roots for negative x, since for such x, 2x < 1, whereas 1 + x2 > 1. There
are certainly roots at x = 0 and 1. Also 24 < 42 + 1, whereas 25 > 52 + 1, so there is a root between 4
and 5. We have to show that there are no other roots. Put f(x) = 2x − x2 − 1. Then f ′′(x) = (ln2)22x − 2.
This is strictly increasing with a single zero. f ′(0) > 0, so f ′(x) starts positive, decreases through zero to
a minimum, then increases through zero. So it has just two zeros. Hence f(x) has at most three zeros,
which we have already found.

Problem. 6.5.10 Let f(x) = a0 + a1x+ · · ·+ anx
n be a polynomial with real coefficients such that f has

n+ 1 distinct real zeros. Use Rolle’s therorem to show that ak = 0, for 0 ⩽ k ⩽ n.

Solution. If f has n + 1 distinct real zeros, the equation fn(x) = n!an = 0 where fn(x) is the nth

derivative should have at least one zero. This gives us an = 0.By extending the same argument to the
other derivatives fk(x) where 1 ⩽ k ⩽ n− 1, we can show that all the coefficients of f(x) are zero.

Problem. 6.5.11 If f : R → R is a differentiable function, prove that there is a root of f ′(x) − af(x) = 0
between any two roots of f(x) = 0.

Solution.
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§6.4 Mean-Value Theorem
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§6.5 L’Hôspital’s Rule

Problem. 6.7.3 Evaluate

lim
n→∞ 4n

(
1 − cos

θ

2n

)

Solution. We have

lim
n→∞ 4n

(
1 − cos

θ

2n

)
= lim

n→∞
2sin2 θ

2n+1

4 θ2

4n+1

θ2 =
θ2

2

Problem. 6.7.4 Evaluate the following limits

(a) lim
n→∞

(
1 + 1

n

)n
(b) lim

n→∞
(
n+1
n+2

)n
(c) lim

n→∞
(
1 + 1

n2

)n
(d) lim

n→∞
(
1 + 1

n

)n2

(e) lim
n→∞ 2pnPn

pn+Pn
, where pn =

(
1 + 1

n

)n and Pn =
(
1 + 1

n

)n+1

Solution. We use L’Hôspital’s Rule for the following

(a) Let y =
(
1 + 1

n

)n. We have

log(y) = nlog

(
1 +

1
n

)
=⇒ log lim

n→∞y = lim
n→∞nlog

(
1 +

1
n

)

=⇒ log lim
n→∞y = lim

n→∞
1

1+ 1
n

(
−1
n2

)
−1
n2

=⇒ log lim
n→∞y = 1

=⇒ lim
n→∞y = e

(b) Let y =
(
n+1
n+2

)n. We have

log(y) = nlog

(
n+ 1
n+ 2

)
=⇒ log lim

n→∞y = lim
n→∞nlog

(
n+ 1
n+ 2

)

=⇒ log lim
n→∞y = lim

n→∞
1

1− 1
n+2

1
(n+2)2

−1
n2

=⇒ log lim
n→∞y = −1

=⇒ lim
n→∞y = e−1
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(c) Let y =
(
1 + 1

n2

)n. We have

log(y) = nlog

(
1 +

1
n2

)
=⇒ log lim

n→∞y = lim
n→∞nlog

(
1 +

1
n2

)

=⇒ log lim
n→∞y = lim

n→∞
1

1+ 1
n2

(
−2
n3

)
−1
n2

=⇒ log lim
n→∞y = 0

=⇒ lim
n→∞y = 1

(d) Let y =
(
1 + 1

n

)n2

. We have

log(y) = n2log

(
1 +

1
n

)
=⇒ log lim

n→∞y = lim
n→∞n2log

(
1 +

1
n

)

=⇒ log lim
n→∞y = lim

n→∞
1

1+ 1
n

(
−1
n2

)
−2
n3

=⇒ log lim
n→∞y = ∞

=⇒ lim
n→∞y = ∞

(e) We have

lim
n→∞pn = e

lim
n→∞Pn = e

Therefore,

lim
n→∞ 2pnPn

pn + Pn
=

2e2

2e
= e

Problem. 6.7.5 Let 0 < a < b. Evaluate

lim
t→0

[∫ 1

0
[bx+ a(1 − x)]tdx

]1/t

Solution. We first evaluate the integral.Let y = bx+ a(1 − x), we have dy = (b− a)dx.

∫ 1

0
[bx+ a(1 − x)]tdx =

1
b− a

∫b
a

ytdy =
1

b− a

(
bt+1

t+ 1
−

at+1

t+ 1

)

36 36



Vamshi Jandhyala (21/04/2020) Problem Solving through problems

Let z =
[

1
b− a

(
bt+1

t+ 1
−

at+1

t+ 1

)]1/t

=⇒ log(z) =
1
t
log

[
1

b− a

(
bt+1

t+ 1
−

at+1

t+ 1

)]
=⇒ log lim

t→0
z = lim

t→0

1
1

b−a

(
bt+1

t+1 − at+1

t+1

) 1
b− a

(
bt+1((t+ 1)log(b) − 1)

(t+ 1)2 −
at+1((t+ 1)log(a) − 1)

(t+ 1)2

)

=⇒ log lim
t→0

z =
b · log(b) − a · log(a)

b− a
− 1

=⇒ lim
t→0

z =
b

b
b−a

ea
a

b−a

Problem. 6.7.6 Calculate

lim
x→∞ x

∫x
0
et

2−x2
dt

Solution. We have

lim
x→∞ x

∫x
0
et

2−x2
dt = lim

x→∞
x
∫x

0 et
2
dt

ex
2 = lim

x→∞
xex

2
+
∫x

0 et
2
dt

ex
2 2x

=
1
2
+ lim

x→∞
∫x

0 et
2
dt

ex
2 2x

=
1
2
+ lim

x→∞ ex
2

2ex2 + 4x2ex
2 =

1
2

Problem. 6.7.7 Prove that the function y = (x2)x, y(0) = 1, is continuous at x = 0.

Solution. We need to prove that limx→0(x
2)x = 1.

Let y = (x2)x

=⇒ log(y) = 2xlog(x)

=⇒ log lim
x→0

y = 2 lim
x→0

log(x)
1
x

=⇒ log lim
x→0

y = 2 lim
x→0

1
x
−1
x2

= 0

=⇒ lim
x→0

y = 1
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§6.6 The Fundamental Theorem

Problem. 6.9.7 What function is defined by the equation

f(x) =

∫x
0
f(t)dt+ 1

Solution. Differentiating both sides we get

f ′(x) = f(x)

The solution for the above differential equation is

f(x) = kex

We have f(0) = 1, therefore k = 1.

Problem. 6.9.8 Let f : [0, 1] → (0, 1) be continuous.Show that the equation

2x−
∫x

0
f(t)dt = 1

has one and only one solution in the interval [0, 1].

Solution. Let F(x) = 2x −
∫x

0 f(t)dt − 1. F(x) is continuous on [0, 1]. We have F(0) = −1 and F(1) =

1 −
∫1

0 f(t)dt > 0. Intermediate-Value Theorem guarantees the existence of value c in [0, 1] such that
F(c) = 0. We have F ′(x) = 2 − f(x) > 0 for x in [0, 1] which means F(x) is strictly increasing on [0, 1].
Therefore, F(x) cannot intersect the x− axis more than once.

Problem. 6.9.9 Suppose that f is a continuous function for all x which satisfies the equation∫x
0
f(t)dt =

∫ 1

x

t2f(t)dt+
x16

8
+

x18

9
+ C

where C is a constant.Find an explicit form of f(x) and find the value of the constant C.

Solution. Differentiating wrt x on both sides, we have

f(x) = −x2f(x) + 2x15(1 + x2)

=⇒ f(x) = 2x15

We also have C+
∫1

0 x
22x15dx = 0. Therefore C = − 1

9 .

Problem. 6.9.10 Let C1 and C2 be curves passing through the origin.A curve C is said to bisect in area
the region between C1 and C2 if for each point P of C the two shaded areas A and B shown in the figure
have equal areas. Determine the upper curve C2 given that the bisecting curve has the equation y = x2

and the lower curve C1 has the equation y = x2

2 .

Solution. Let x = f(y) be the equation of the upper curve. We have∫u
0
t2 −

t2

2
dt =

∫u2

0

√
t− f(t)dt
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Differentiating both sides wrt u we get,

u2

2
=
(
u− f(u2)

)
2u

=⇒ f(u2) =
3
4
u

=⇒ f(y) =
3
4
√
y

=⇒ x =
3
4
√
y

=⇒ x2 =
9

16
y

=⇒ y =
16
9
x2 is the upper curve C2

Problem. 6.9.11 Sum the series 1 + 1
3 − 1

5 − 1
7 + 1

9 + 1
11 − 1

13 − . . .

Solution. Consider the function defined by the infinite series

f(x) = x+
x3

3
−

x5

5
−

x7

7
+

x9

9
+

x11

11
−

x13

13
− . . .

for 0 < x ⩽ 1. The series is absolutely convergent for |x| < 1,

and therefore we can rearrange the terms:

f(x) =

(
x+

x9

9
+ . . .

)
+

(
x3

3
+

x11

11
+ . . .

)
−

(
x5

5
+

x13

13
+ . . .

)
−

(
x7

7
+

x15

15
+ . . .

)
+ . . .

We have for 0 < x < 1,

f ′(x) = (1 + x8 + . . . ) + (x2 + x10 + . . . ) − (x4 + x12 + . . . ) − (x6 + x14 + . . . ) + . . .

= (1 + x2 − x4 − x6)(1 + x8 + . . . )

=
(1 + x2)(1 − x4)

1 − x8 =
1 + x2

1 + x4

Integrating and noting that f(0) = 0, we get

f(x) =
arctan(

√
2x+ 1) − arctan(1 −

√
2x)√

2

Therefore,

1 +
1
3
−

1
5
−

1
7
+

1
9
+

1
11

−
1
13

− · · · = f(1) =
π

2
√

2

Problem. 6.9.12 Suppose that f is differentiable, and that f ′(x) is strictly increasing for x ⩾ 0. If f(0) = 0,
prove that f(x)/x is strictly increasing for x > 0.

Solution.
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7 Inequalities

§7.1 Arithmetic-Mean-Geometric-Mean Inequality

Problem. 7.2.6 If a,b, c are positive numbers

(a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ⩾ 9a2b2c2

Solution. We have from AM ⩾ GM,

a2b+ b2c+ c2a

3
⩾ abc

ab2 + bc2 + ca2

3
⩾ abc

Multiplying the above, we get

(a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ⩾ 9a2b2c2

Problem. 7.2.7 Suppose a1, . . . ,an are positive numbers and b1, . . . ,bn is a rearrangement of a1, . . . ,an,
Show that

a1

b1
+ · · ·+ an

bn
⩾ n

Solution. We have from AM ⩾ GM,

a1
b1

+ · · ·+ an

bn

n
⩾ n

√
a1

b1
· · · an

bn

As b1, . . . ,bn is a rearrangement of a1, . . . ,an, the product on the right hand side above is 1. Therefore,

a1

b1
+ · · ·+ an

bn
⩾ n

Problem. 7.2.9 For each integer n > 2, prove that

(a)
∏n

k=0

(
n
k

)
<
( 2n−2

n−1

)n−1

(b) n! <
(
n+1

2

)n
(c) 1x3x5x · · · x(2n− 1) < nn

Solution. Using AM > GM
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(a) We have

∑n−1
k=1

(
n
k

)
n− 1

>

(
n∏

k=0

(
n

k

)) 1
n−1

=⇒
(

2n − 2
n− 1

)n−1

>

n∏
k=0

(
n

k

)

(b) We have ∑n
k=1 k

n
> (n!)

1
n

=⇒
(
n+ 1

2

)n

> n!

(c) We have ∑n
k=1 2k− 1

n
> (1x3x5x · · · x(2n− 1))

1
n

=⇒ (
n2

n
)n = nn > 1x3x5x · · · x(2n− 1)

Problem. 7.2.10 Given that all roots of x6 − 6x5 + ax4 + bx3 + cx2 + dx+ 1 = 0 are positive, find a,b, c,d.

Solution. Let u, v,w, x,y, z be the roots of the above equation. From AM ⩾ GM, we have

u+ v+w+ x+ y+ z

6
=

6
6
⩾ (uvwxyz)1/6 = 1

As we have equality only when u = v = w = x = y = z = 1, we have

x6 − 6x5 + ax4 + bx3 + cx2 + dx+ 1 ≡ (x− 1)6 = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x+ 1

Therefore a = 15,b = −20, c = 15,d = −6.

§7.2 Cauchy-Schwarz Inequality

Problem. 7.3.6 Use the Cauchy-Schwarz inequality to prove that if a1,a2, . . . ,an are real numbers such
that a1 + a2 + · · ·+ an = 1, then a2

1 + a2
2 + · · ·+ a2

n ⩾ 1/n.

Solution. We have

(a1 · 1 + · · ·+ an · 1)2 ⩽ (a2
1 + · · ·+ a2

n)(1
2 + · · ·+ 12)

=⇒ 1 ⩽ (a2
1 + · · ·+ a2

n)n

=⇒ 1
n

⩽ (a2
1 + · · ·+ a2

n)
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Problem. 7.3.7 Use the Cauchy-Schwarz inequality to prove the following

(a) if p1,p2, . . . ,pn, x1, x2, . . . , xn are 2n positive real numbers,

(p1x1 + · · ·+ pnxn)
2 ⩽ (p1 + · · ·+ pn)(p1x

2
1 + · · ·+ pnx

2
n)

(b) If a,b, c are positive numbers

(a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ⩾ 9a2b2c2

(c) If xk,yk, k = 1, 2, . . . ,n are positive numbers,

n∑
k=1

xkyk ⩽

(
n∑

k=1

kx2
k

)1/2( n∑
k=1

y2
k/k

)1/2

(d) If ak,bk, ck, k = 1, 2, . . . ,n are positive numbers,

(
n∑

k=1

akbkck

)4

⩽

(
n∑

k=1

a4
k

)(
n∑

k=1

b4
k

)(
n∑

k=1

c2
k

)2

(e) If Ck =
(
n
k

)
for n > 2, 1 ⩽ k ⩽ n,

n∑
k=1

√
Ck ⩽

√
n(2n − 1)

Solution. Using Cauchy Schwarz inequality

(a) We have

(
√
p1
√
p1x1 + · · ·+

√
pn

√
pnxn)

2 ⩽
(√

p1
2 + · · ·+

√
pn

2
) (

(
√
p1x1)

2 + · · ·+ (
√
pnxn)

2)
=⇒ (p1x1 + · · ·+ pnxn)

2 ⩽ (p1 + · · ·+ pn)(p1x
2
1 + · · ·+ pnx

2
n)

(b) We have(
(a
√
b)2 + (b

√
c)2 + (c

√
a)2
)(

(c
√
b)2 + (a

√
c)2 + (b

√
a)2
)
⩾
(
a
√
b · c

√
b+ b

√
c · a

√
c+ c

√
a · b

√
a
)2

=⇒ (a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ⩾ (3abc)2 = 9a2b2c2

(c) We have (
n∑

k=1

(
√
kxk)

2

)(
n∑

k=1

(yk/
√
k)2

)
⩾

(
n∑

k=1

√
kxk · yk/

√
k

)2

=⇒

(
n∑

k=1

kx2
k

)1/2( n∑
k=1

y2
k/k

)1/2

⩾
n∑

k=1

xkyk
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(d) We have (
n∑

k=1

akbkck

)2

⩽

(
n∑

k=1

a2
kb

2
k

)(
n∑

k=1

c2
k

)

=⇒

(
n∑

k=1

akbkck

)2

⩽

(
n∑

k=1

a4
k

)1/2( n∑
k=1

b4
k

)1/2( n∑
k=1

c2
k

)

=⇒

(
n∑

k=1

akbkck

)4

⩽

(
n∑

k=1

a4
k

)(
n∑

k=1

b4
k

)(
n∑

k=1

c2
k

)2

(e) We have (
n∑

k=1

1 ·
√
Ck

)2

⩽

(
n∑

k=1

12

)(
n∑

k=1

Ck

)

=⇒
n∑

k=1

√
Ck ⩽

√
n(2n − 1)

Problem. 7.3.8 For n a positive integer, let (a1,a2, . . . ,an) and (b1,b2, . . . ,bn) be two (not necessarily
distinct) permutations of (1, 2, . . . ,n). Find sharp lower and upper bounds for a1b1 + · · ·+ anbn.

Solution. We have

a1b1 + · · ·+ anbn ⩽

(
n∑

k=1

k2

)1/2( n∑
k=1

k2

)1/2

=
n(n+ 1)(2n+ 1)

6

Using the rearrangement inequality we have

a1b1 + · · ·+ anbn ⩾ 1 · n+ · · ·+ 1 · n =

n∑
k=1

k(n+ 1 − k)

=
n(n+ 1)

2

(
n+ 1 −

2n+ 1
3

)
=

n(n+ 1)(n+ 2)
6

Problem. 7.3.9 If a,b, c,d are positive numbers such that c2 + d2 = (a2 + b2)3 prove that

a3

c
+

b3

d
⩾ 1

with equality if and only if ad = bc.

Solution. We have

(a2 + b2)3 = c2 + d2

=⇒ (a2 + b2)4 = (a2 + b2)(c2 + d2) ⩾ (ac+ bd)2

=⇒ (a2 + b2)2 ⩾ (ac+ bd)
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We also have (
a3

c
+

b3

d

)
(ac+ bd) ⩾ (a2 + b2)2 ⩾ (ac+ bd)

=⇒
(
a3

c
+

b3

d

)
⩾ 1

Problem. 7.3.10 Let P be a point in the interior of triangle ABC, and let r1, r2, r3 denote the distances
from P to the sides a1,a2,a3 of the triangle respectively. Use Cauchy-Schwarz inequality to show that
the minimum value of

a1

r1
+

a2

r2
+

a3

r3

occur when P is at the incenter of triangle ABC.

Solution. We have((√
a1

r1

)2

+

(√
a2

r2

)2

+

(√
a3

r3

)2
)(

(
√
a1r1)

2 + (
√
a2r2)

2 + (
√
a3r3)

2) ⩾ (a1 + a2 + a3)
2

=⇒ a1

r1
+

a2

r2
+

a3

r3
⩾

4s2

2∆

=⇒ a1

r1
+

a2

r2
+

a3

r3
⩾

2s
r

=
a1

r
+

a2

r
+

a3

r

where r is the inradius, ∆ is the area of ABC and s is the semi-perimeter.
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8 Geometry

§8.1 Classical Plane Geometry

Problem. 8.1.8 If a,b, c are the sides of a triangle ABC, ta, tb, tc are the angle bisectors, and Ta, Tb, Tc are
the angle bisectors extended until they are chords of the circle circumscribing the triangle ABC, prove
that

abc =
√
TaTbTctatbtc

Solution.

Problem. 8.1.12 We are given an inscribed triangle ABC. Let R denote the circumradius; let ha denote
the altitude AD.

(a) Show that triangles ABD and ALC are similar, and hence that ha = 2R = bc.

(b) Show that the area of ∆ABC is abc/4R.

Solution. (a) In triangles ABC and ALC, ∠ABC is equal to ∠ALC and ∠ACL = ∠BAC = 90◦. Therefore
triangles ABD and ALC are similar.We also have

c

ha
=

2R
b

=⇒ ha =
bc

2R

(b) Area of the triangle ABC is

1
2
aha =

1
2
a
bc

2R
=

abc

4R

Problem. 8.1.13 The radius of the inscribed circle of a triangle is 4,and the segments into which one side
is divided by the point of contact are 6 and 8.Determine the other two sides.

Solution. The sides of the triangle 14, 6 + x and 8 + x.Hence, s = (14 + 6 + x+ 8 + x)/2 = 14 + x.

∆ =
√
(14 + x) · x · 8 · 6 = 4(14 + x)

=⇒ 14 + x = 3x
=⇒ x = 7

The other two sides of the triangle are 13 and 21.

Problem. 8.1.14 Triangles ABC and DEF are inscribed in the same circle.Prove that

sinA+ sinB+ sinC = sinD+ sinE+ sinF

if and only if the perimeters of the given triangles are equal.
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Let ai,bi, ci for i = 1, 2 be the sides of the two triangles and R the circumradius. We have,

Solution.

sinA+ sinB+ sinC = sinD+ sinE+ sinF

⇐⇒ a1

2R
+

b1

2R
+

c1

2R
=

a2

2R
+

b2

2R
+

c2

2R
⇐⇒ a1 + b1 + c1 = a2 + b2 + c2

Problem. 8.1.15 In the following figure, CD is a half chord perpendicular to the diameter AB of the
semicircle with center O. A circle with center P is inscribed as shown in Figure 8.13, touching AB at E
and arc BD at F.Prove that ∆AED is isoceles.

Solution. The key observation is that O,P and F are collinear. This is because the circle P is tangent to
semicircle at F. Let r be the radius of circle P and R be that of the semicircle. Then OP = R− r and from
the right triangle OPE,we get

(R− r)2 = r2 + (r+OC)2

Also, R2 = OC2 + CD2 from the right triangle OCD.Combining these two equations we get:

DC2 = r2 + 2rOC+ 2rR

But

AE = R+ r+OC

Therefore,

AE2 = r2 + 2r(R+OC) + (R+OC)2 = CD2 +AC2

Since AD2 = CD2 +AC2, AE = AD.

Problem. 8.1.16 Find the length of a side of an equilateral triangle in which the distances from its vertices
to an interior point are 5, 7, and 8.

Solution. We have

cosθ =
52 + 82 − 72

2 · 5 · 8
=

1
2

We also have

cos(60◦ + θ) =
1
2
· 1

2
−

√
3

2
·
√

3
2

=
52 + 82 − s2

2 · 5 · 8
=⇒ s2 = 129
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§8.2 Complex Numbers in Geometry

Problem. 8.4.5 Let A0,A1,A2,A3,A4 divide a unit circle into five equal parts.Prove that the chords A0A1,
A0A2 satisfy

(A0A1 ·A0A2)
2 = 5

Solution. If A0 = 1,then A1 = ei2π/5 and A2 = e−i2π/5.We have

(A0A1 ·A0A2)
2 = (ei2π/5 − 1)(e−i2π/5 − 1)(e−i2π/5 − ei2π/5)(ei2π/5 − e−i2π/5)

= 4(1 − cos(2π/5))(1 − cos(4π/5))

= 8(1 − cos2(π/5))(1 + cos(π/5))

When 5θ = π, we have

cos3θ = −cos2θ

=⇒ 4cos3θ− 3cosθ = −2cos2θ+ 1

=⇒ 4cos3θ+ 2cos2θ− 3cosθ− 1 = 0

cos4θ = −cosθ

=⇒ 8cos4θ− 8cos2θ+ 1 = −cosθ

=⇒ 8cos2θ(cos2θ− 1) = −(1 + cosθ)

=⇒ 8cos2θ(cosθ− 1) = −1

=⇒ 8cos3θ− 8cos2θ+ 1 = 0

From the above two equations, we have

4cos2θ− 2cosθ− 1 = 0

Therefore, cosθ =
√

5+1
4 . Therefore,

(A0A1 ·A0A2)
2 = 8(1 − cos2(π/5))(1 + cos(π/5)) = 8(

10 − 2
√

5
16

)(

√
5 + 5
4

) = 5

Problem. 8.4.6 Given a point on the circumference of a unit circle and the vertices A1,A2, . . . ,An of an
inscribed regular polygon of n sides,prove that PA4

1 + PA4
2 + · · ·+ PA4

n is a constant (i.e., independent of
the position of P on the circumference).

Solution. The vertices of the regular polygon can be represented by ei2πk/n where k = 0, 1, 2, . . . ,n− 1.
Let z be any point on the circumference of the circle. We have

PA4
1 + PA4

2 + · · ·+ PA4
n =

n−1∑
k=0

(
(z− e

i2πk
n )(z− e−

i2πk
n

)2

=

n−1∑
k=0

(
2 − ze−

i2πk
n − ze

i2πk
n

)2

=

n−1∑
k=0

4 + z2e−
i4πk
n + z2e

i4πk
n − 4ze−

i2πk
n − 4ze

i2πk
n + 2

= 6n
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Problem. 8.4.7 Let G denote the centroid of triangle ABC.Prove that

3(GA2 +GB2 +GC2) = AB2 + BC2 + CA2

Solution. WLOG, we can assume that the centroid of the triangle with vertices at A(z1),B(z2) and C(z3)
is located at 0. We then have z1 + z2 + z+ 3 = 0.

AB2 + BC2 + CA2 = (z1 − z2)(z1 − z2) + (z2 − z3)(z2 − z3) + (z3 − z1)(z3 − z1)

= z1z1 + z2z2 − z2z1 − z1z2 + z2z2 + z3z3 − z2z3 − z3z2 + z3z3 + z1z1 − z1z3 − z3z1

= 2(z1z1 + z2z2 + z3z3) − z1(z2 + z3) − z2(z1 + z3) − z3(z1 + z2)

= 2(z1z1 + z2z2 + z3z3) − z1(−z1) − z2(−z2) − z3(−z3)

= 3(z1z1 + z2z2 + z3z3) = 3(GA2 +GB2 +GC2)

Problem. 8.4.8 Let ABCDEF be a hexagon in a circle of radius r. Show that if AB = CD = EF = r, then
the midpoints of BC,DE and FA are the vertices of an equilateral triangle.

Solution. If O is the center of the circle circumscribing the hexagon, OAB, OCD and OEF are equilateral
triangles. If A,C, and E are represented by z1, z2 and z3, the coordinates of B,D and F are z1e

iπ/3, z2e
iπ/3

and z3e
iπ/3.The midpoints of BC, DE and FA are (z1e

iπ/3 + z2)/2, (z2e
iπ/3 + z3)/2 and (z3e

iπ/3 + z1)/2.

Whenever c1, c2 and c3 are complex numbers that are the vertices of an equilateral triangle, we have

c2
1 + c2

2 + c2
3 = c1c2 + c2c3 + c3c1

We have, (
z1e

iπ/3 + z2

2

)2

+

(
z2e

iπ/3 + z3

2

)2

+

(
z3e

iπ/3 + z1

2

)2

=
z2

1e
i2π/3 + z2

2 + 2z1z2e
iπ/3

4
+

z2
2e

i2π/3 + z2
3 + 2z1z3e

iπ/3

4
+

z2
3e

i2π/3 + z2
1 + 2z1z3e

iπ/3

4

=
z2

1(e
i2π/3 + 1) + z2

2(e
i2π/3 + 1) + z2

3(e
i2π/3 + 1) + 2z1z2e

iπ/3 + 2z2z3e
iπ/3 + 2z3z1e

iπ/3

4

=
z2

1e
iπ/3 + z2

2e
iπ/3 + z2

3e
iπ/3 + 2z1z2e

iπ/3 + 2z2z3e
iπ/3 + 2z3z1e

iπ/3

4

We also have,(
z1e

iπ/3 + z2

2

)(
z2e

iπ/3 + z3

2

)
+

(
z2e

iπ/3 + z3

2

)(
z3e

iπ/3 + z1

2

)
+

(
z3e

iπ/3 + z1

2

)(
z1e

iπ/3 + z2

2

)
=

z2
1e

iπ/3 + z2
2e

iπ/3 + z2
3e

iπ/3 + z1z2(1 + eiπ/3 + ei2π/3) + z2z3(1 + eiπ/3 + ei2π/3) + z3z1(1 + eiπ/3 + ei2π/3)

4

=
z2

1e
iπ/3 + z2

2e
iπ/3 + z2

3e
iπ/3 + 2z1z2e

iπ/3 + 2z2z3e
iπ/3 + 2z3z1e

iπ/3

4

Therefore, the midpoints of BC, DE and FA form an equilateral triangle.

Problem. 8.4.9 If z1, z2, z3 are such that |z1| = |z2| = |z3| = 1 and z1 + z2 + z3 = 0,show that z1, z2, z3 are
the vertices of an equilateral triangle inscribed in a unit circle.
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Solution. The lengths of the three medians of the triangle are given by∣∣∣∣z1 + z2 − 2z3

2

∣∣∣∣ = ∣∣∣∣−z3 − 2z3

2

∣∣∣∣ = 3
2∣∣∣∣z1 + z3 − 2z2

2

∣∣∣∣ = ∣∣∣∣−z2 − 2z2

2

∣∣∣∣ = 3
2∣∣∣∣z2 + z3 − 2z1

2

∣∣∣∣ = ∣∣∣∣−z1 − 2z1

2

∣∣∣∣ = 3
2

As the lengths of the three medians are equal, the triangle whose vertices are z1, z2 and z3 is an equilateral
triangle.

Problem. 8.4.10 Show that z1, z2, z3 form an equilateral triangle if and only if

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1

Solution. Rotating one side by 60◦ we get the second side in an equilateral triangle, so we have

z3 − z1 = (z2 − z1)e
iπ/3

⇐⇒ z3 − z1

z2 − z1
−

1
2
= i

√
3

2

⇐⇒ (2z3 − z1 − z2)
2

4(z2 − z1)2 =
−3
4

⇐⇒ 4z2
3 + z2

1 + z2
2 + 2z1z2 − 4z3z1 − 4z3z2 = −3z2

2 − 3z2
1 + 6z2z1

⇐⇒ 4z2
3 + 4z2

1 + 4z2
2 = 4z1z2 + 4z2z3 + 4z3z1

⇐⇒ z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1

Problem. 8.4.11 The three points in the complex plane which correspond to the roots of the equation

z3 − 3pz2 + 3qz− r = 0

are the vertices of a triangle.

(a) Prove that the centroid of the triangle is the point corresponding to p.

(b) Prove that ABC is an equilateral triangle if and only if p2 = q.

Solution. If z1, z2, z3 are the roots of the above equation, we have

z1 + z2 + z3 = 3p
z1z2 + z2z3 + z3z1 = 3q

(a) If z1, z2, z3 are the vertices of a triangle,we have the centroid at (z1 + z2 + z3)/3 = p.

(b) If z1, z2, z3 are the vertices of an equilateral triangle, we have

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1

=⇒ 9p2 − 6q = 3q

=⇒ p2 = q
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